Estimating Types in Binaries using Predictive Modeling Ran El-Yaniv Eran Yahav Omer Katz

Problem: Calls to virtual functions break the control flow of programs and hinder reverse engineering (RE) efforts Statically determine most likely targets of each virtual function call Goal: Solution: Determine types of objects used in virtual function calls based on how they are used

Evaluation:

- Evaluated over 20 benchmarks
- Compared to ground truth from manual I
- Objective: rank expected target highest
- Across all benchmarks, for over 80% of virtual functions, expected target ranked

The research leading to these results has received funding from the European Union's - Seventh Framework Programme (FP7) under grant agreement n° 615688 – ERC- COG-PRIME.

stical Language Models probability in a language) > P _{English} (A talk giving I am) n	Train model by parsing to <i>n</i> -grams and building probability tree	abcaabb J 3-grams: abc bca
tial Match implementation ompression algorithm	Query model by traversing path to sentence	caa aab abb

	<u>Result of Smoothing.exe:</u>
RE	 X axis – maximum rank Y axis – percentage of calls to virtu
calls to in top 3	for which the expected ranked below the maximu

